
Lecture 07.07
by Marina Barsky

Edit Distance:
improving running time

Algorithm by Miller & Myers
(The MM algorithm)

g

a

t

a

c

a

S1

a t c a c gS2

j

i

5 6
0

1

2

3

4

5

6

The main idea of the MM

algorithm is to move as far

as possible through a given

diagonal of the grid graph,

following the sequence of

matches

0,0

0,1

0,2

0,3

3,0 2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4

The MM algorithm: definitions

Diagonals:

Name each diagonal

according to the coordinates

of its starting point

The 2 neighbor diagonals

of diagonal (0,0) are:

diagonal (1,0)

and diagonal (0,1)

The 2 neighbor diagonals

of diagonal (0,2) are

diagonal (0,1)

and diagonal (0,3)

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0 2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4

The MM algorithm: observation

A d-path in the edit graph

is a path which starts at

point (0,0) and has a cost

exactly d

Observation: d-paths can

end only at d diagonals

around the main diagonal

This is because we cannot

move from the main

diagonal to (d+1,0) or

(0,d+1) diagonal in less

than d+1 insertions

(deletions)

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0 2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4

The MM algorithm

The algorithm performs an

initialization and D

iterations, where D is an

edit distance between S1

and S2

In each iteration d, the

algorithm builds all d-paths,

extending the (d-1)-paths

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0 2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4

The MM algorithm. Iteration 0

In the initialization

phase, we build the

path of cost 0.

There is only one

possible path of a total

cost 0, which starts at a

source point (0,0) and

runs along the main

diagonal through the

sequence of character

matches

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0 2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4

The MM algorithm. Iteration 1

We produce all possible

paths with a total cost 1.

There can be only 3

possible paths with the cost

1 and they end at:

the main diagonal (0,0)

Or one of its 2 neighbor

diagonals

In order to find these paths,

we extend the 0-cost path

with 1 edit operation,

reaching each of the two

neighbor diagonals with a

jump of cost 1 and adding a

mismatch to the end of a 0-

path on the main diagonal

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0 2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4

The MM algorithm. Iteration 1

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0 2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4

We produced all

possible paths with a

total cost 1.

Then we extend the end of

each such path with a

series of consecutive

matches running as far as

possible down the

corresponding diagonal,

such obtaining all possible

paths of a total cost 1.

The MM algorithm. Iteration 1

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0 2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4

We produced all possible

paths with a total cost 1.

The ends of all paths of a

total cost 1:

The MM algorithm. Iteration 2.

We produce all possible

paths with a total cost 2.

These paths can end only at

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

Since the paths which end

at all other diagonals, for

example (0,3), involve at

least 3 edit operations of

moving from the main

diagonal to the

corresponding diagonal.

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0 2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4

3,0 2,0 1,0

The MM algorithm. Iteration 2.

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

0,4

0,5

4,05,0

0 1 2 3 4

We produce all possible

paths with a total cost 2.

These paths can end only at

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

First, we find the paths of

the total cost 2 which end at

diagonal (0,2) – by adding a

jump from the end of the

best path with the cost 1

from diagonal (0,1)

and at diagonal (2,0) –

extending the path ended at

diagonal (1,0)

The MM algorithm. Iteration 2.

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0 2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4

We produce all possible

paths with a total cost 2.

These paths can end only at

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

For diagonal (0,1) there are

2 possible ways of obtaining

paths of cost 2: by adding 1

mismatch from

or by adding 1 horizontal

jump from

We choose the extension

of a previous path which

runs further along this

diagonal:

3,0 2,0 1,0

The MM algorithm. Iteration 2.
Dynamic programming

We produce all possible

paths with a total cost 2.

These paths can end only at

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

The same logic is applied

for diagonal (1,0)

In this example both

extensions

are of equal quality, so we

chose one of them:

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

0,4

0,5

4,05,0

0 1 2 3 4

3,0 2,0 1,0

The MM algorithm. Iteration 2.

Dynamic programming

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

0,4

0,5

4,05,0

0 1 2 3 4

We produce all possible

paths with a total cost 2.

These paths can end only at

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

For diagonal (0,0) there are

3 possible extensions:

We choose the furthest

reaching along this

diagonal:

3,0 2,0 1,0

The MM algorithm. Iteration 2.

Dynamic programming

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

0,4

0,5

4,05,0

0 1 2 3 4

We produce all possible

paths with a total cost 2.

These paths can end only at

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

When the best path

extensions are made for

each diagonal, we extend

the path for each diagonal

with a series of matches,

such obtaining all the paths

with a total cost 2

3,0 2,0 1,0

The MM algorithm. Iteration 3.
Dynamic programming

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

0,4

0,5

4,05,0

0 1 2 3 4

We produce all possible

paths with a total cost 3.

These paths can end only at

diagonals:

(0,0) (0,1) (0,2) (0,3) (1,0)

(2,0) (3,0)

We apply the same dynamic

programming approach as

in iteration 2 for each such

diagonal in turn

3,0 2,0 1,0

The MM algorithm. Iteration 3.

Dynamic programming

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

0,4

0,5

4,05,0

0 1 2 3 4

We produce all possible

paths with a total cost 3.

These paths can end only at

diagonals:

(0,0) (0,1) (0,2) (0,3) (1,0)

(2,0) (3,0)

We apply the same dynamic

programming approach as

in iteration 2 for each such

diagonal in turn

And we extend each best

path with the sequence of

matches

3,0 2,0 1,0

The MM algorithm. Iteration 3.

Reached destination

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

0,4

0,5

4,05,0

0 1 2 3 4

We produce all possible

paths with a total cost 3.

At this point, one of the

paths with a total cost 3

has reached the

destination – point (6,6).

The algorithm terminates,

and D=3.

3,0 2,0 1,0

The MM algorithm.

Total work

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

0,4

0,5

4,05,0

0 1 2 3 4

If the final edit distance

is D, we only compute

the grid values in a strip

2D+1 around the main

diagonal.

D

3,0 2,0 1,0

The MM algorithm.

Total work

g

a

t

a

c

a

S1

a t c a c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

0,4

0,5

4,05,0

0 1 2 3 4

Note that we did not

compute values of some

cells at all (shown in grey)

We have worked with no

more than 2D+1 diagonals.

The length of each diagonal

is at most N (if N>=M)

The total running time is

O(ND)

Thus, the algorithm

performs well for similar

strings (with a small edit

distance D)

The MM algorithm –
pseudocode 1/4

algorithm MM_Edit_Distance (S1, S2)

destinationReached:=false

d:=0

initializeDiagonalArrays()

snake (0,0)

while destinationReached=false do

d: =d+1

buildExtensions (d)

return d

algorithm initializeDiagonalArrays()
//allocate arrays of end points for the paths for

each diagonal

prevFrontier[N+M+1]

currentFrontier[N+M+1]

for i from 1 to N:

prevFrontier(i,0):=(-1,-1)

for i from 1 to M:

prevFrontier(0,i):=(-1,-1)

prevFrontier(0,0):=(0,0)

algorithm MM_Edit_Distance (S1, S2)

destinationReached:=false

d:=0

initializeDiagonalArrays()

snake(0,0)

while destinationReached=false do

d: =d+1

buildExtensions (d)

return d

The MM algorithm –
pseudocode 2/4

algorithm buildExtensions (I)
for i from I down to 1:

currentFrontier(i,0)=bestExtension (i, 0)

currentFrontier(0,i)=bestExtension (0,i)

/* main diagonal at last */

currentFrontier(0,0)=bestExtension (0,0)

for i from I down to 1:

prevFrontier(i,0)= currentFrontier (i,0)

prevFrontier(0,i)= currentFrontier (0,i)

prevFrontier(0,0)= currentFrontier (0,0)

The MM algorithm –
pseudocode 3/4

algorithm bestExtension (diagonal name (i,j))

if i=0 and j=0: //the main diagonal

pointFromAbove: =max ((0,0), (prevFrontier(0,1).X+1, prevFrontier (0,1).Y))

pointFromBelow: = max ((0,0), (prevFrontier (1,0).X, prevFrontier (1,0).Y+1))

pointFromItself: =max((0,0),(prevFrontier (0,0).X+1, prevFrontier (0,0).Y+1))

else

if i=0: //the diagonals above the main diagonal

pointFromAbove:=max ((0,j), (prevFrontier (0,j+1).X+1, prevFrontier (0,j+1).Y))

pointFromBelow:= max ((0,j), (prevFrontier (0,j-1).X, prevFrontier (0,j+1).Y+1))

pointFromItself:=max((0,j),(prevFrontier (0,j).X+1, prevFrontier (0,j).Y+1))

if j=0: //the diagonals below the main diagonal

pointFromAbove:=max ((i,0), (prevFrontier (i-1,0).X+1, prevFrontier (i-1,0).Y))

pointFromBelow:= max ((i,0), (prevFrontier (i+1,0).X, prevFrontier (i+1,0).Y+1))

pointFromItself: =max((i,0),(prevFrontier (i,0).X+1, prevFrontier (i,0).Y+1))

currEnd: = max (pointFromAbove, pointFromBelow, pointFromItself)

currEnd: =snake (currEnd.X, currEnd.Y)

if currEnd=(N,M):

destinationReached:=true

return currEnd

The MM algorithm –
pseudocode 4/4

algorithm snake ((x,y))

while x<N and y<N and S1[x]=S2[y] do:

x:=x+1

y:=y+1

return (x,y)

algorithm MM_Edit_Distance (S1, S2)

destinationReached:=false

d:=0

initializeDiagonalArrays()

snake(0,0)

while destinationReached=false do

d: =d+1

buildExtensions (d)

return d

Faster Edit Distance:
open problem

■ There are also algorithms which perform

better for the case of large edit distance

■ The complexity of all these algorithms is still

quadratic in the worst case

■ The best result (four-Russians speed-up –

using Fast Fourier Transform) is O(N2/log N)

Can it be done better?

