
Lecture 07.07
by Marina Barsky

Edit Distance:
improving running time



Algorithm by Miller & Myers  
(The MM algorithm)

g

a

t

a

c

a

S1

a    t c a   c gS2

j

i

5 6
0

1

2

3

4

5

6

The main idea of the MM  

algorithm is to move as far  

as possible through a given  

diagonal of the grid graph,  

following the sequence of  

matches
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The MM algorithm: definitions

Diagonals:

Name each diagonal  

according to the coordinates 

of its starting point

The 2 neighbor diagonals

of diagonal (0,0) are:

diagonal (1,0)

and diagonal (0,1)

The 2 neighbor diagonals  

of diagonal (0,2) are

diagonal (0,1)

and diagonal (0,3)

g

a

t

a

c

a

S1

a    t c a   c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0    2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4



The MM algorithm: observation

A d-path in the edit graph 

is  a path which starts at 

point  (0,0) and has a cost 

exactly  d

Observation: d-paths can 

end only at d diagonals 

around the main diagonal

This is because we cannot  

move from the main  

diagonal to (d+1,0) or  

(0,d+1) diagonal in less  

than d+1 insertions  

(deletions)
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The MM algorithm

The algorithm performs an 

initialization and D 

iterations, where D is an 

edit distance between S1 

and  S2

In each iteration d, the 

algorithm builds all d-paths, 

extending the (d-1)-paths
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The MM algorithm. Iteration 0

In the initialization  

phase, we build the  

path of cost 0.

There is only one  

possible path of a total  

cost 0, which starts at  a 

source point (0,0)  and 

runs along the main 

diagonal through  the 

sequence of  character 

matches
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The MM algorithm. Iteration 1

We produce all possible  

paths with a total cost 1.

There can be only 3  

possible paths with the cost  

1 and they end at:

the main diagonal (0,0)

Or one of its 2 neighbor 

diagonals

In order to find these paths,  

we extend the 0-cost path  

with 1 edit operation,  

reaching each of the two  

neighbor diagonals with a  

jump of cost 1 and adding a  

mismatch to the end of a 0-

path on the main diagonal
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The MM algorithm. Iteration 1
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We produced all  

possible paths with a  

total cost 1.

Then we extend the end of  

each such path with a 

series of consecutive 

matches running as far as 

possible down the 

corresponding diagonal, 

such obtaining all  possible 

paths of a total cost 1.



The MM algorithm. Iteration 1
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We produced all possible  

paths with a total cost 1.

The ends of all paths of a  

total cost 1:



The MM algorithm. Iteration 2.

We produce all possible  

paths with a total cost 2.

These paths can end only at  

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

Since the paths which end  

at all other diagonals, for  

example (0,3), involve at  

least 3 edit operations of  

moving from the main  

diagonal to the  

corresponding diagonal.

g

a

t

a

c

a

S1

a    t c a   c gS2

j

5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

3,0    2,0 1,0

0,4

0,5

4,05,0

0 1 2 3 4



3,0    2,0 1,0

The MM algorithm. Iteration 2.
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We produce all possible  

paths with a total cost 2.

These paths can end only at  

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

First, we find the paths of  

the total cost 2 which end at  

diagonal (0,2) – by adding a  

jump from the end of the  

best path with the cost 1  

from diagonal (0,1)

and at diagonal (2,0) –

extending the path ended at  

diagonal (1,0)



The MM algorithm. Iteration 2.
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We produce all possible  

paths with a total cost 2.

These paths can end only at  

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

For diagonal (0,1) there are  

2 possible ways of obtaining  

paths of cost 2: by adding 1  

mismatch from

or by adding 1 horizontal  

jump from

We choose the extension 

of a previous path which 

runs further along this  

diagonal:



3,0    2,0 1,0

The MM algorithm. Iteration 2.
Dynamic programming

We produce all possible  

paths with a total cost 2.

These paths can end only at  

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

The same logic is applied  

for diagonal (1,0)

In this example both  

extensions

are of equal quality, so we  

chose one of them:
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3,0    2,0 1,0

The MM algorithm. Iteration 2.

Dynamic programming
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We produce all possible  

paths with a total cost 2.

These paths can end only at  

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

For diagonal (0,0) there are  

3 possible extensions:

We choose the furthest  

reaching along this  

diagonal:



3,0    2,0 1,0

The MM algorithm. Iteration 2.

Dynamic programming
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We produce all possible  

paths with a total cost 2.

These paths can end only at  

diagonals:

(0,0) (0,1) (0,2) (1,0) (2,0)

When the best path  

extensions are made for  

each diagonal, we extend  

the path for each diagonal  

with a series of matches,  

such obtaining all the paths  

with a total cost 2



3,0    2,0 1,0

The MM algorithm. Iteration 3.
Dynamic programming
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We produce all possible  

paths with a total cost 3.

These paths can end only at  

diagonals:

(0,0) (0,1) (0,2) (0,3) (1,0)

(2,0) (3,0)

We apply the same dynamic  

programming approach as  

in iteration 2 for each such  

diagonal in turn



3,0    2,0 1,0

The MM algorithm. Iteration 3.

Dynamic programming
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We produce all possible  

paths with a total cost 3.

These paths can end only at  

diagonals:

(0,0) (0,1) (0,2) (0,3) (1,0)

(2,0) (3,0)

We apply the same dynamic  

programming approach as  

in iteration 2 for each such  

diagonal in turn

And we extend each best 

path with the sequence of 

matches



3,0    2,0 1,0

The MM algorithm. Iteration 3.

Reached destination
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We produce all possible  

paths with a total cost 3.

At this point, one of the 

paths with a total cost 3 

has reached the 

destination – point (6,6).

The algorithm terminates,  

and D=3.



3,0    2,0 1,0

The MM algorithm. 

Total work
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If the final edit  distance 

is D, we only compute 

the grid values in a strip  

2D+1 around the  main 

diagonal.

D



3,0    2,0 1,0

The MM algorithm. 

Total work
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Note that we did not  

compute values of some 

cells at all (shown in grey)

We have worked with no  

more than 2D+1 diagonals.  

The length of each diagonal  

is at most N (if N>=M)

The total running time is

O(ND)

Thus, the algorithm  

performs well for similar  

strings (with a small edit  

distance D)



The MM algorithm –
pseudocode 1/4

algorithm MM_Edit_Distance (S1, S2)  

destinationReached:=false

d:=0

initializeDiagonalArrays()  

snake (0,0)

while destinationReached=false do

d: =d+1

buildExtensions (d)

return d

algorithm initializeDiagonalArrays()
//allocate arrays of end points for the paths for  

each diagonal

prevFrontier[N+M+1]  

currentFrontier[N+M+1]

for i from 1 to N:  

prevFrontier(i,0):=(-1,-1)

for i from 1 to M:

prevFrontier(0,i):=(-1,-1)  

prevFrontier(0,0):=(0,0)



algorithm MM_Edit_Distance (S1, S2)  

destinationReached:=false

d:=0

initializeDiagonalArrays()  

snake(0,0)

while destinationReached=false do

d: =d+1

buildExtensions (d)

return d

The MM algorithm –
pseudocode 2/4

algorithm buildExtensions (I)
for i from I down to 1:  

currentFrontier(i,0)=bestExtension (i, 0)  

currentFrontier(0,i)=bestExtension (0,i )

/* main diagonal at last */

currentFrontier(0,0)=bestExtension (0,0)

for i from I down to 1:

prevFrontier(i,0)= currentFrontier (i,0)

prevFrontier(0,i)= currentFrontier (0,i)

prevFrontier(0,0)= currentFrontier (0,0)



The MM algorithm –
pseudocode 3/4

algorithm bestExtension (diagonal name (i,j))

if i=0 and j=0: //the main diagonal

pointFromAbove: =max ((0,0), (prevFrontier(0,1).X+1, prevFrontier (0,1).Y))  

pointFromBelow: = max ((0,0), (prevFrontier (1,0).X, prevFrontier (1,0).Y+1))  

pointFromItself: =max((0,0),( prevFrontier (0,0).X+1, prevFrontier (0,0).Y+1))

else

if i=0: //the diagonals above the main diagonal

pointFromAbove:=max ((0,j), (prevFrontier (0,j+1).X+1, prevFrontier (0,j+1).Y))

pointFromBelow:= max ((0,j), (prevFrontier (0,j-1).X, prevFrontier (0,j+1).Y+1))

pointFromItself:=max((0,j),( prevFrontier (0,j).X+1, prevFrontier (0,j).Y+1))

if j=0: //the diagonals below the main diagonal

pointFromAbove:=max ((i,0), (prevFrontier (i-1,0).X+1, prevFrontier (i-1,0).Y))  

pointFromBelow:= max ((i,0), (prevFrontier (i+1,0).X, prevFrontier (i+1,0).Y+1))  

pointFromItself: =max((i,0),( prevFrontier (i,0).X+1, prevFrontier (i,0).Y+1))

currEnd: = max (pointFromAbove, pointFromBelow, pointFromItself)  

currEnd: =snake (currEnd.X, currEnd.Y)

if currEnd=(N,M):

destinationReached:=true  

return currEnd



The MM algorithm –
pseudocode 4/4

algorithm snake ((x,y))

while x<N and y<N and S1[x]=S2[y] do:

x:=x+1  

y:=y+1

return (x,y)

algorithm MM_Edit_Distance (S1, S2)  

destinationReached:=false

d:=0

initializeDiagonalArrays()  

snake(0,0)

while destinationReached=false do

d: =d+1

buildExtensions (d)

return d



Faster Edit Distance: 
open problem

■ There are also algorithms which perform  

better for the case of large edit distance

■ The complexity of all these algorithms is still 

quadratic in the worst case

■ The best result (four-Russians speed-up –

using Fast Fourier Transform) is O(N2/log N)

Can it be done better?


