Edit Distance:
Improving running time

Lecture 07.07

Algorithm by Miller & Myers
#The MM algorithm)

The main idea of the MM

a |t C al C g algorithm is to move as far
as possible through a given
S| —ol (1} [2] |3| |4 |5| |6 diagonal of the grid graph,
_ following the sequence of
a) J matches
C \\\\ \\ 0’5
2
a 0,4
3
t 0,3
4 .
a 00,2
5 .
g 01
6 S S — .
50 40 30 20 1,0 0,0

The MM algorithm: definitions

v

S1| o 21 |3 4 5 6

a Al \ J

C "0,5
2

a 0,4
3

t 0,3
4 .

a " 02
5 .

g 0,1
6 S S — .
v 50 4,0 3,0 20 1,0 0,0

Diagonals:

Name each diagonal
according to the coordinates
of its starting point

The 2 neighbor diagonals
of diagonal (0,0) are:

diagonal (1,0)
and diagonal (0,1)

The 2 neighbor diagonals
of diagonal (0,2) are

diagonal (0,1)
and diagonal (0,3)

The MM algorithm: observation

A d-path in the edit graph
a| tjc|aj|c|g is a path which starts at
point (0,0) and has a cost
S1| —o| |1| [2| (3| |4| |5| |6 exactly d
a J Observation: d-paths can
i . end only at d diagonals
C °0,5 around the main diagonal
2 N
a 04 This is because we cannot
3 o move from the main
t ™ 0.3 diagonal to (d+1,0) or
4 o (0,d+1) diagonal in less
a 0.2 than d+1 insertions
5 (deletions)
0 0,1
6 S S — .
I 50 4,0 30 20 10 0,0

The MM algorithm

a|t|c|ajc g The algorithm performs an
S1| fol I 51 3] [a 5 6 initialization and D
R iterations, where D is an

a j edit distance between S1

1 and S2
C > 0,5 In each iteration d, the

algorithm builds all d-paths,

a ; | 0,4 extending the (d-1)-paths
t 0,3

4 .
a " 0,2

5 .
g 01

6 T .

v 50 40 30 20 1,0 0,0

The MM algorithm. Iteration O

In the initialization
alt|c|la|cC 0 phase, we build the
s1| _Tol 1 =2 R (41 51 TI6 path of cost O.
a 1l J There is only one
C \ o5 possible path of a total
2 L cost 0, which starts at a
source point (0,0) and
4 3 \ 0.4 runs along the main
t ™ 0.3 diagonal through the
4 o sequence of character
a " 0.2 matches
5 .
g 0,1
6 N .
\ 50 4030 20 10 [0

The MM algorithm. Iteration 1

J

" 0.5

0.4

" 0.3

0.2

N
S
\‘-

5.0 4\,0 3:0 2.0 1,0 0,0

v

We produce all possible
paths with a total cost 1.

There can be only 3
possible paths with the cost
1 and they end at:

the main diagonal (0,0)

Or one of its 2 neighbor
diagonals

In order to find these paths,
we extend the O-cost path
with 1 edit operation,
reaching each of the two
neighbor diagonals with a
jump of cost 1 and adding a
mismatch to the end of a O-
path on the main diagonal

The MM algorithm. Iteration 1

v

We produced all
possible paths with a
total cost 1.

Then we extend the end of
each such path with a
series of consecutive
matches running as far as
possible down the
corresponding diagonal,
such obtaining all possible
paths of a total cost 1.

The MM algorithm. Iteration 1

v

We produced all possible
paths with a total cost 1.

The ends of all paths of a
total cost 1:

The MM algorithm. Iteration 2.

We produce all possible
altilclalc g paths with a total cost 2.

S1| Jo| |1]| |[2| |3]| |4| |5| |6 These paths can end only at
: _ diagonals:
J (0,0) (0,1) (0,2) (1,0) (2,0)

v

°0,5 Since the paths which end
. at all other diagonals, for
0,4 example (0,3), involve at
. least 3 edit operations of
0,3 moving from the main
diagonal to the
- corresponding diagonal.

X
N
N
N
N
N\
N
N\
=
\
N
D
D
N
D
D
A

\g
N
\\\‘ ‘\\ ‘\\ \\\‘ \\\ \\\
v 50 40 30 [20 T01 06

The MM algorithm. Iteration 2.

We produce all possible

altlclalc g paths with a total cost 2.
S1| Jo| |1]| |[2| |3]| |4| |5| |6 These paths can end only at
3 _ > diagonals:
a . J (0,0) (0,1) (0,2) (1,0) (2,0)
C . 1705 First, we find the paths of
2 the total cost 2 which end at
a 0,4 diagonal (0,2) — by adding a
3 jump from the end of the
t 0,3 best path with the cost 1
4 from diagonal (0,1)
a s 0,2 and at diagonal (2,0) —
extending the path ended at
g . \ - diagonal (1,0)
v 510 4’0 3’0 2’

The MM algorithm. Iteration 2.

t|c|a|C
S1 o (1| |2| |3] |4| |5
a
C
a
t .
9 AN

y

\g
N
N \ N \
N N R N N R
N Y N
N N S .
510 |10 3’: - - .

J

" 0.5
0.4

" 0.3

D
N
D
D
N
N
N
\-

T 01

v

We produce all possible
paths with a total cost 2.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

For diagonal (0,1) there are
2 possible ways of obtaining
paths of cost 2: by adding 1
mismatch from @

or by adding 1 horizontal
jump from @

We choose the extension
of a previous path which
runs further along th@®
diagonal:

The MM algorithm. Iteration 2.

S2la |t |clalc|g

S1| o 2| |3| |4| |5] |6

a Al \ J

C 0,5
2 .

a 0,4
3

t . | 03
4 N\ \\\

a \\\ \-
5 - N AN
A= RNANANANANANE

50 40 3,0 B0l 1,0 0,0

Dynamic programming

We produce all possible
paths with a total cost 2.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

The same logic is applied
for diagonal (1,0)

In this example both
extensions @ @

are of equal quality, so we
chose one of them: @

The MM algorithm. Iteration 2.

S2 1 a clalc|g
S1| o 4
a |]

C

2
a

3
t

4
a

5
g

6

Dynamic programming

We produce all possible
paths with a total cost 2.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

For diagonal (0,0) there are

3 possible extensions:
@ @ @

We choose the furthest
reaching along this
diagonal: @

The MM algorithm. Iteration 2.

S2la |t |clalc|g

S1| o] |1 2| 3| |4 5 6

a Al \ J

C ~0,5
2

a 0,4
3

t . | 03
4 \x \ \\

a : \ \ 02

0 | NSNS o
| 50 40 3,0 -- 0,0

v

Dynamic programming

We produce all possible
paths with a total cost 2.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

When the best path
extensions are made for
each diagonal, we extend
the path for each diagonal
with a series of matches,
such obtaining all the paths
with a total cost 2

The MM algorithm. Iteration 3.

S2la |t |clalc|g
S1| o 1 21 |3 4 5 6
a 1 N N J
C " 0.5
2 .
a 0.4
3
t 0,3
4 .
A | r: "02
g - S 01
50 4,0 0] [20] @01 016

Dynamic programming

We produce all possible
paths with a total cost 3.

These paths can end only at
diagonals:

(0,0) (0,1) (0,2) (0,3) (1,0)
(2,0) (3,0)

We apply the same dynamic
programming approach as
in iteration 2 for each such
diagonal in turn

The MM algorithm. Iteration 3.
Dynamic programming

S2la |t |clalc|g

S1| o 1 21 |3 4 5 6

a 1 N N J

C " 05
2 .

a 0.4
3

t . 03
4

a : : \ 02

0 | NSO e

v 510 4’0 - - - .

We produce all possible
paths with a total cost 3.

These paths can end only at
diagonals:

(0,0) (0,1) (0,2) (0,3) (1,0)
(2,0) (3,0)

We apply the same dynamic
programming approach as
in iteration 2 for each such
diagonal in turn

And we extend each best
path with the sequence of
matches

The MM algorithm. Iteration 3.

S2 t|lclalc|g

S1| 2| 3| |4| |5] |6

a 1 AN N N J

C] 05
2

a 0,4
3

t . 03
4 " .

n -
5 - N AN

0 |- SN e

N
N
N
N N N A N
N N N AN R N
N N N . N

Reached destination

We produce all possible
paths with a total cost 3.

At this point, one of the
paths with a total cost 3
has reached the
destination — point (6,6).

The algorithm terminates,
and D=3.

The MM algorithm.
Total work

g2 If the final edit distance
a | tjcjajc 9 is D, we only compute
S1| ol |1| |2| [3]| |4] |[5] |6 the grid values in a strip
> 2D+1 around the main
a j diagonal.
A 1
C 0,5
2 .
a p 0,4
3
! 03
v 4 .
a | 02
6 e,
v 50 40 30l 20 @0l 66

The MM algorithm.

otal work

iT

v

a
S1| o
a 1],
C
2
a
3
t
4
a
5
g \
6 .
\ 50 4,0 B0l 20 26

J

N
N
N
\05
]
\
N
N
N
:’I
N
N
\
\-
N
N
N
\-
N
N
\‘-

Note that we did not
compute values of some
cells at all (shown in grey)

We have worked with no
more than 2D+1 diagonals.
The length of each diagonal
Is at most N (if N>=M)

The total running time is
O(ND)

Thus, the algorithm
performs well for similar
strings (with a small edit
distance D)

The MM algorithm —
i_pseudocode 1/4

algorithm MM_Edit_Distance (S, S,)

destinationReached:=false

a=0

initializeDiagonalArrays()

snake (0,0)

while destinationReached=false do
d =d+1
buildExtensions (d)

return d

algorithm initializeDiagonalArrays()

//allocate arrays of end points for the paths for
each diagonal

prevFrontier/N+M+1]
currentFrontier/N+M+1]

for /from 1 to N
prevFrontier(/0):=(-1,-1)

for /from 1 to M.
prevFrontien0,/):=(-1,-1)

prevFrontier(0,0):=(0,0)

The MM algorithm —
pseudocode 2/4

algorithm MM_Edit Distance (S,, S))

destinationReachea:=false algorithm buildExtensions (1)

d'=0 . . for /from /down to 1:
initializeDiagonalArrays() currentFrontier(i0)= bestExtension (i 0)
snake(0,0) currentfrontier(0,/)= bestExtension (0,/)
while destinationReached=false

a _=d+1) /* main diagonal at last */

b;’”dfx tensions () currentfrontier(0,0)= bestExtension (0,0)
return

for /from /down to 1:
prevFrontier([0)= currentFrontier (1,0)

prevFrontien0,)= currentFrontier (0,))
prevFrontier(0,0)= currentFrontier (0,0)

The MM algorithm —
pseudocode 3/4

algorithm bestExtension (diagonal name (7))
if /=0 and j=0: //the main diagonal
pointFromAbove.: =max ((0,0), (prevFrontien(0,1).X+1, prevFrontier (0,1). 1))
pointFromBelow.: = max ((0,0), (prevFrontier (1,0).X, prevFrontier (1,0). Y+1))
pointFromlitself: =max((0,0),(prevFrontier (0,0).X+1, prevFrontier (0,0). Y+1))
else
if /~=0: //the diagonals above the main diagonal
pointFromAbove.=max ((0,)), (prevFrontier (0,j+1).X+1, prevFrontier (0,j+1).Y))
pointFromBelow.:= max ((0,)), (prevFrontier (0,f1).X, prevFrontier (0,j+1). Y+1))
pointFromlitself:=max((0,)),(prevFrontier (0,)).X+1, prevFrontier (0,j). Y+1))

if /=0: //the diagonals below the main diagonal
pointFromAbove:=max ((/,0), (prevFrontier (F1,0).X+1, prevFrontier (+1,0).Y))

pointFromBelow.:= max ((1,0), (prevFrontier (i+1,0).X, prevFrontier (+1,0). Y+1))
pointFromlitself: =max((/0),(prevFrontier (;0).X+1, prevFrontier (/,0).Y+1))

currEnd: = max (pointFromAbove, pointFromBelow, pointFromlitself
currEnd: =snake (currEnd. X, currEnd.Y)
if currEnd=(N,M):
destinationReached: =true
return currEnd

The MM algorithm —
i_pseudocode 4/4

algorithm MM_Edit Distance (S,, S))

destinationReached:=false

a:=0

initializeDiagonalArrays()

snake(0,0)

while destinationReached=false do
d =d+1
buildExtensions (d)

return d

algorithm snake ((x,)))
while x</NVand y<Nand S;[xX]=5,[)] do:
X.=x+1
yi=y+1
return (x,))

Faster Edit Distance:

i_open problem

= There are also algorithms which perform
better for the case of large edit distance

« The complexity of all these algorithms is still
quadratic in the worst case

= 1he best result (four-Russians speed-up —
using Fast Fourier Transform) is O(/M/log N)

Can it be done better?

